第482页

好吧,浪费是可耻的,他还是有点儿心疼。

不过没那么疼就是了。

将仪器的事情暂且放在一边,陆舟一脸严肃地问道:“电池样品会做吗?”

康尼立刻说道:“没问题,这很容易!”

陆舟想了想,做出了吩咐:“11、14号样品由你负责,我负责15、23号样品。按照30,20,10的质量分数将空心碳球粉末与单质硫混合,制成正极材料,然后组装锂电,该怎么做懂的吧?”

康尼立正挺胸道:“当然!”

负极材料没什么好说的,因为合成工艺简单,现在改性ds薄膜与铜芯锂片的组合不仅仅是工业界的标配,也成了各大材料学研究所的标配。

至于正极材料,就稍微要花点心思了。

不只是空心碳球,一切碳纳米材料都存在类似的麻烦。

简单的机械搅拌与研磨只能使空心碳球团聚体宏观地与基体粉体混合,对团聚体自身的分散无能为力。

在采用球磨法将空心碳球与单质硫混合之前,还要通过添加聚氨基甲酸乙酯等表面活性剂将其分散在乙醇,然后再与单质硫混合。

至于剩下的步骤,和当初陆舟做锂电实验也没什么特别大的区别。

在手套箱中组装电池,然后接上电池测试系统,通过大量的充放电试验来确认,这些材料在电极中的性能。

这些工作都没有什么技巧可言。

事实上,材料学的研究本身就没什么技巧。

当前的新材料研发主要依据便是研究者的“科学直觉”和大量重复的“尝试法”实验,利用有限的条件去发现一条可行的方法。如果能再次基础上建立一套在有限范围内适用的理论,那便算是相当厉害的大牛了。

数学的方法虽然能缩小实验的工作量,但实验依旧是必不可少的……